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We employ the variational theory of optimal control problems
and evolutionary algorithms to investigate the form finding of min-
imum compliance elastic structures. Mathematical properties of
ground structure approaches are discussed with reference to ar-
bitrary collections of structural elements. A numerical procedure
based on a Breeder Genetic Algorithm is proposed for the shape op-
timization of discrete structural models. Several numerical applica-
tions are presented, showing the ability of the adopted search strat-
egy in avoiding local optimal solutions. The proposed approach is
validated against a parade of results available in the literature.
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1. INTRODUCTION
The formulation of mathematical methods to achieve an op-

timal structural design, according to static, functional and/or
aesthetic criteria, has constantly attracted the attention of en-
gineers and architects. Graphical constructions, reduced scale
models and physical analogies have been used in the past (see,
e.g., [1–3]) to assist in the creative phase of the design pro-
cess [4,5]. Mirabile anticipations of modern tools of conceptual
design are found in the work of the Spanish architect A. Gaudí on
funicular structures, organic shapes and curved surfaces. They
can also be found in the studies of J. C. Maxwell on fully-
stressed trusses and the research of A. G. M. Michell on optimal
arrays of orthogonal trusses (cf. e.g.) [2, 6, 7].

In the most recent literature, shape (or geometry) optimiza-
tion is identified with the particular stage of structural opti-
mization, which deals with the search of the optimal configu-
ration of a design domain. It is usually performed by moving
the boundaries of an initial trial configuration in order to min-
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imize (or maximize) an objective function under suitable de-
sign constraints. Structural optimization involves optimal cross-
sectional dimensions (sizing optimization) and optimal connec-
tivity of structural components (topology optimization). In some
cases, the term generalized shape optimization, or topology op-
timization, is used to indicate the entire structural optimization
process. Typical optimization objectives are minimal weight,
minimal compliance (or maximal stiffness), optimal eigenfre-
quencies, and maximal structural ductility. Optimal design con-
straints often include material volume, displacement, stiffness,
stress and buckling loads.

Both discrete and continuous approaches to structural opti-
mization have been formulated over the past 50 years. Discrete
models are formed by constructing finite collections of struc-
tural elements, whose positions, dimensions and connectivity
are subject to optimization. In these collections, elements can
be removed to establish a ground structure. This particular ap-
proach was introduced in the 1960’s for truss structures [8] and
is still rather active (see, e.g., [9–16]). On the other hand, con-
tinuous models consist of one or multiple design domains made
up of composite materials with perforated periodic microstruc-
tures. The optimal material distribution is found by optimizing
the design variables associated with the microstructures and
making use of the homogenization theory. This approach was
introduced at the end of the 1980s [17] and has been applied to
a wide range of technical problems (cf. [18–27]).

As for optimization algorithms, mathematical programming
methods were largely used during the 1960s for ground struc-
ture problems. In more recent years, the necessity of solv-
ing problems with a large number of design variables has
led researchers to formulate more powerful optimization al-
gorithms, such as optimality criteria ([17, 28, 29]), sequential
approximate optimization methods ( [30–33]), and evolutionary
structural optimization ( [34–36]). These methods are gradi-
ent based and make use of sensitivity analysis. Methods which
are not based on gradients (gradient less or heuristic meth-
ods), such as simulated annealing ( [37,38]), genetic algorithms
([39–43]), evolutionary computation ([44–48]), and biological
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226 F. FRATERNALI ET AL.

FIG. 1. Truss structure with an adoptive node.

growth ( [49–51]), have also been introduced. In comparison
to gradient methods, heuristic approaches may require longer
computational times, however, they do not require elaborate
knowledge of the search environment, can provide multiple sub-
optimal solutions, and are capable of handling a wide range of
technical problems. Moreover, heuristic methods take advan-
tage of computational parallelization, which can overcome the
hurdle of longer computational times.

Generalized shape optimization problems are not often well
posed, i.e., affected by lack of existence of solutions unless
suitable relaxations are introduced [52]. This is usually the case
when continuous formulations are employed and the competing
objects are domains instead of functions or scalar parameters
( [53]). On the other hand, when existence is established, such
problems are typically non convex and characterized by multiple
local optima.

An elementary benchmark example is offered by the min-
imum compliance problem of the ground structure shown in
Figure 1. One can take the vertical coordinate X of the loaded
node as the unique design variable and set all the remaining
geometrical and mechanical quantities involved (h, l, H, V ; ex-
tensional stiffness of the bars) to 1, in consistent units. In the
linear elastic regime, the strain energy U can be computed at
equilibrium as a function of X in order to obtain the two-well
graph shown in Figure 2. This graph clearly illustrates that the
examined problem is non convex, and that gradient based algo-
rithms can easily get trapped at the local minima a in Figure 2.
The local min-max compliance configurations of the structure
are depicted in Figure 3.

This article deals with a numerical study on ground-structure
approaches to shape optimization problems, which are mod-
eled as optimal control problems. According to Bucur and But-
tazzo [53], the existence of solutions is discussed in general
form, regardless of the specific nature of the ground structure,

FIG. 2. Strain energy at equilibrium vs vertical position of the loaded node
for the structure of Figure 1. (color figure provided online)

which can be composed of an arbitrary collection of truss, beam,
plate, shell, and 3D elements. Attention is focused on linear elas-
ticity and unconstrained minimization. The search for global op-
timal solutions is performed via evolutionary strategies, which
naturally conform to the generality of the present approach. The
peculiar features of these strategies and their ability in dealing
with structural design optimization challenges, are well empha-
sized in [46]. It is also important to note their ability to avoid
local optima and explore a search space of high dimension-
ality. They also demonstrate robustness and flexibility in the
process of creative design. Genetic and evolutionary algorithms
have been widely used in recent years for the optimal design of
trusses and steel structures (cf. [46, 54] and references therein),
and also in the design of airfoil structures [55]. Nevertheless,
the potential of GAs and EAs for the structural design of more
general structures and the automation of architectural design
techniques still needs to be fully explored.

The present paper aims to pursue the following objectives:

• application of evolutionary strategies to the shape opti-
mization of architectural and structural shapes made up
of arbitrary assemblies of 1D, 2D, and/or 3D elements;

FIG. 3. Local min-max compliance configurations of the structure of Figure 1
(cf. Figure 2). (color figure provided online)
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ON THE STRUCTURAL SHAPE OPTIMIZATION 227

• numerical implementation of classical tools of shaping
structures, such as graphical constructions of funicular
curves and optimal thrust surfaces, requiring that the
lines of thrust lie within a givin design domain [1, 2,
3];

• computer simulation of the first stages of conceptual
design dealing with simple bounds on design variables;

• execution of local/global optimization via suitable def-
initions of variable bounds.

We examine a parade of structural optimization examples, which
involve the optimal shape of trusses, hanging cables and domes.
The first example of Section. 4.1. shows the agility of the adopted
Breeder Genetic Algorithm in handling a two-well non-convex
problem. The examples of Sections. 4.2., 4.3. and 4.4. prove
that funicular arches and optimal shapes of roofs can be con-
ventiently obtained as minimum compliance shapes. All of the
examined problems deal with global shape optimization, with
the exception to those presented in Section. 4.3., which examine
local optimization of spherical, baroque and gothic roof models.
A specific example is dedicated to study the optimal shape of
St. Peter’s cupola in Rome. Here we establish a parallel with the
conclusions of a renowned treatise by Giovanni Poleni [56] and
known results about the statics of the cupola [57]. Relevant ex-
tensions and generalizations of the current study are discussed
in the closing section.

2. A VARIATIONL APPROACH TO SHAPE
OPTIMIZATION

Let us consider the optimal shape problem of an open sub-
set A of a design domain D, representing the reference con-
figuration of an elastic body. The optimal shape minimizes a
cost functional J (A, y), where y denotes either the deformation
mapping or the displacement field carrying A into the deformed
configuration B.

Following Bucur and Buttazzo [53], we identify A with a
control variable and y with a state variable, with the latter
subject to the equilibrium equations of the body (state equa-
tions). We thus deal with an optimal control problem ruled by
the following variational formulation

min{J (A, y) : A ∈ X, y ∈ argminG(A, ·) ⊂ Y } (1)

where now X is the set of controls, Y is the space of states, and
G is the state functional given by

G(A, y) = �( y) + χH (A)( y) (2)

with

�( y) =
∫

D
(W (∇ y) − b · y) dx (3)

χH (A)( y) =
{

0 if y ∈ H (A),
+∞ otherwise.

(4)

In Eq. (2)–(4), W is the strain-energy density and � is the total
potential energy of the body. Furthermore, in the same equa-
tions, b is the referential body force density per unit volume,
and H (A) is the space of kinematically admissible deforma-
tions/displacements. The set of controls X coincides with the
family of all open subsets of D. For the sake of simplicity, we as-
sume that no surface forces are applied on the Neumann portion
of ∂ A, and that no optimization constraints are imposed.

A special case is that of minimum compliance problems of
linear elastic bodies, where y is the displacement field and W
is a quadratic function of ε( y) := 1/2(∇ y + ∇ yT ). We let J
coincide with the strain energy U of the body at equilibrium as
follows

J = U (yA) =
∫

D
W (ε( yA))dx = 1

2

∫
D

b · yAdx (5)

Here, yA ∈ argmin G(A, y), and the Euler-Lagrange equations
of the state functional (2.2) (principle of virtual work) have
been employed. We note that, in this case, J does not depend
explicitly on the control variable A.

We now introduce an adaptive triangulation Th of A, and let
Th indicate the set of topological and interpolation information
encoded in Th . Furthermore, we denote Xh ∈ Xh ⊂ �N and
yh ∈ Yh ⊂ �M to be the arrays collecting the Cartesian coordi-
nates of the triangulation vertices (mesh nodes) in the reference
and deformed configurations, respectively. We refer to N as
the number of controls and to X as the vector of controls. Fi-
nally, we introduce a family of finite element approximations
ŷh(Th, Xh, yh) of y over Th . A discrete formulation of Eq. (1)
is as follows

min
{

Jh(Th, Xh, yh) :Th ∈ Mh, Xh ∈ Xh,

yh ∈ argmin Gh(Th, Xh, ·) ⊂ Yh
(6)

where

Jh(Th, Xh, yh) = J ( ŷh(Th, Xh, yh)) (7)

Gh(Th, Xh, yh) = G(Th, Xh, ŷh(Th, Xh, yh)) (8)

In Eq. (6), Mh is a family of finite element meshes, gener-
ated, e.g., through recursive edge-swaps and local topological
improvements of the given mesh Th [58], [59].

Problem (6) applies to the topology and shape optimization
of arbitrary ground structures, formed by any combinations of
1D, 2D and/or 3D elastic bodies/structures.

For fixed Th (geometry optimization), it is easy to prove that
a solution always exists. One can observe that Xh is bounded
since every node lies in D̄. We will assume that Xh is a general
compact subset of �N to account for possible additional con-
straints which appear, e.g., if only a subset of nodes is allowed
to move or if the nodes are only allowed to move in certain
directions in the reference configuration. Taking into consid-
eration that both the mappings Xh �→ yh ∈ argmin Gh(Xh, ·)
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228 F. FRATERNALI ET AL.

and (Xh, yh) �→ Jh(Xh, yh) are continuous, the existence of the
minimum of Xh �→ Jh(Xh, yh(Xh)) over the compact set Xh

immediately follows from Weirstrass’s extreme value theorem
(see, e.g., [60]). Non-uniqueness has been shown in the previous
paragraph by way of example.

Generalization of problem (6) to finite elasticity is straight-
forward through suitable modification of the cost function
and the state functional (see, e.g., [58, 59]). Extensions
to dissipative problems and dynamics can also be carried
out through minimization of incremental energy functionals
( [61–65]).

The next section illustrates the use of Evolutionary Algo-
rithms for the search of the global minimum of Jh(Xh) :=
Jh(Xh, yh(Xh)), considering simple shape optimization, mini-
mum compliance problems and linearly elastic structures. The
proposed search technique simply requires the iterative compu-
tation of the state variables and the cost (or fitness) function,
and can be easily generalized to nonlinear and/or dynamical
evolution problems (cf., e.g., [66]).

3. SHAPE OPTIMIZATION VIA EVOLUTIONARY
ALOGRITHMS

3.1. Generality of Evolutionary Algorithms
The term Evolutionary Algorithms (EAs) refers to a family of

probabilistic search methods inspired by the principle of Natural
Evolution. In particular, EAs are based on concepts taken from
Darwinian evolution of species, natural selection, and genetics.
They are well suited for problems where the solution space is
large and complex, i.e., multi-modal, discontinuous, and noisy
[67].

These algorithms work on a population of individuals whose
genotypes encode the features to be estimated. A genotype can
be thought of as a set of genes, each one encoding one of the
individual’s features. To bootstrap the algorithm, a population
of individuals is randomly generated and an iterative process,
made up of two steps, is then entered. In the first step, the
fitness of each individual is evaluated by measuring its perfor-
mance by solving the problem at hand. In other words, each
element of the population is evaluated in terms of a quantita-
tive fitness, which represents the discriminant feature between
a better phenotype and a worse one. This feature is defined by
the probability that the organism will have to reproduce or as
a function of the number of the offspring the organism has. In
the second step, a new population is generated in the following
way: pairs of individuals belonging to the current population
are selected according to their fitness and mated by means of
a recombination operator in order to generate new individuals.
Such individuals are successively mutated with a set probabil-
ity. The whole process is iterated until some termination cri-
teria are fulfilled or a maximum number g of generations is
reached.

3.2. Breeder Genetic Algorithms
Breeder Genetic Algorithms (BGAs) [44, 47, 48] are more

effective than other algorithms because they directly work with
the variables to be optimized. Furthermore, selection mecha-
nisms and genetic operators (mutation and recombination) are
suited for a better and more efficient exploration of extremely
large search spaces. In fact, in contrast to other EAs in which the
selection is stochastic and meant to mimic Darwinian evolution,
the BGA selection scheme is a deterministic one in which the
fittest individuals are selected and entered into the gene pool to
be recombined and mutated to form the new generation. By do-
ing so, the best individuals are treated as super-individuals and
mated together in order to create a fitter population. In the fol-
lowing sections, we discuss the selection mechanism, as well as
the different types of genetic operators of BGAs; further details
on these aspects can be found in [44, 47, 48].

3.3. Individuals and Fitness
When applying BGAs (or EAs) to the shape optimization

problems described in section. 2. it is natural to identify the indi-
viduals by the control vectors Xh ∈ Xh ⊂ �N , their genes with
the single control variables (nodal coordinates) Xh1 , . . . , XhN ,
and their fitness with Jh(Xh, yh(Xh)). The algorithm will sort
the individuals in order of increasing fitness values such that the
best individual (#1 on the list) will coincide with the minimum
compliance “individual” of the given population.

For the sake of simplicity, we will hereafter drop the subscript
h and employ the simplified notations X and J (or U ) for the
search set Xh and the fitness Jh , respectively. The symbol X t

i (or
Y t

i , Zt
i , etc.) will be instead used to denote the i th individual

(control vector) of the generation number t , while the entire
population at generation (or time) t will be denoted Pt .

3.4. Selection
With regard to the selection mechanism, BGAs adopt the

“Truncation” selection scheme where individuals are sorted ac-
cording to their fitness and only the best individuals are selected
to mate. The µ best individuals are picked within the current
population of λ elements as parents. T = µ/λ is called the trun-
cation threshold and indicates the proportion of the population
selected to mate, while individuals below the truncation thresh-
old do not produce offspring. Typical values of T are within the
range 0.02 to 0.2. By doing so, the best individuals are treated
as super-individuals and mated together, hoping that this will
lead to a fitter population. As discussed previously, these con-
cepts are taken from other sciences and mimic animal breeding.
It should be noted that, when generating a new population, the
best individual within the old population will always be retained
in the next one, while the remaining λ − 1 individuals are gen-
erated by selecting, mating and mutating individuals of the old
population. The distribution of the selection probability ps for
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ON THE STRUCTURAL SHAPE OPTIMIZATION 229

FIG. 4. BGA optimization of the truss structure in Figure 1. The horizontal axis shows the generation number and the vertical axis shows the corresponding best
fitness (color figure provided online).

the truncation mechanism is given by the following mapping:

S : X t
i ∈ Pt → ps

(
X t

i

) =
{ 1

µ
1 ≤ i ≤ µ

0µ ≤ i ≤ λ
(9)

3.5. Recombination and Mutation
In order to better define the genetic operators, let X =

(X1, . . . , X N ) and Y = (Y1, . . . , YN ) be two parents where Xi

and Yi are real variables. A recombination mechanism generates
offspring from two parents; BGAs make use of three different
recombination operators:

1. Discrete recombination (DR)

2. Extended intermediate Recombination (EIR)
3. Extended Line Recombination (ELR)

The discrete recombination generates corners of the hyper-
cube defined by the parents, which is equivalent to exchang-
ing values among individuals. According to this recombination
scheme, each offspring will have the generic component Zi

given by Xi or Yi , with a probability of 0.5 for each of them. In
other words, if H (X, Y) is the smallest hypercube containing X
and Y, then Z can only be a corner of H (X, Y). Denoting R as
the recombination operator, one gets the following:

Rdr :
(
Xt , Yt , p

) ∈ X × X × [0, 1] → Zt+1 ∈ X (10)

FIG. 5. Physical and design constraints for the optimal design of a truss structure (color figure provided online).
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230 F. FRATERNALI ET AL.

FIG. 6. BGA optimization of the truss in Figure 5. The horizontal axis shows the generation number and the vertical axis shows the corresponding normalized
best fitness J/F L . The best shapes are shown below the corresponding plots.
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ON THE STRUCTURAL SHAPE OPTIMIZATION 231

FIG. 7. BGA optimization of the truss in Figure 5. The horizontal axis shows
the generation number and the vertical axis shows the corresponding normalized
best fitness J/F L . The best shapes are shown below the corresponding plots.

with

Zt+1 =
{

Xt , p > 0.5
Yt , p ≤ 0.5

(11)

As for the Extended Intermediate Recombination, one should
have the following:

Reir :
(
Xt , Yt , c

) ∈ X × X × [−d, 1 + d]N → Zt+1 ∈ X
(12)

with

Zt+1
i = Xt

i + ci
(
Y t

i − Xt
i

)
,∀i ∈ {1, . . . , N } (13)

where ci is a scaling factor chosen uniformly at random over
an interval [−d, 1 + d], with d typically ranging in the interval
[0, 0.5]. A good choice for d is 0.25, which allows the attainment
of all the values belonging to the continuous interval between
xi and yi and also allows for values outside the given interval.
The Extended Line Recombination is similar to EIR, except for
the choice of a unique scaling factor for all the variables:

Relr :
(
Xt , Yt , c

) ∈ X × X × [−d, 1 + d] → Zt+1 ∈ X (14)

with

Zt+1
i = Xt

i + c
(
Y t

i − Xt
i

)
,∀i ∈ {1, . . . , N } (15)

where c is the global scaling factor. The difference between the
two latter operators is that in the EIR a new ci is to be evaluated
for each component of the genotype vector, while in the ELR
only one c is to be computed and used for all the components.
As a consequence, EIR is capable of producing any point within
a hypercube slightly larger than the one defined by the parents,
while ELR can generate any point on the line defined by the
parents in the search space. Mutation operators are very impor-
tant because they are able to modify the speed of convergence
and the dimension of the search space, and they have to be con-
veniently tuned to avoid a too fast and premature convergence,
with the possibility to be trapped in local minima. As a con-
sequence, the offspring are sometimes subject to mutation, in
which single alleles are changed from parent to offspring.

Offspring variables are mutated by the addition of small ran-
dom values (size of mutation step), with low probability. The
probability of mutating a variable is set to be inversely pro-
portional to the number of parameters to optimize. A mutation
rate of 1/N produces good results for a broad class of test
functions. However, it has to be underlined that the mutation
rate is independent of the population size and a self adaption
of mutation rate during the evolution could be useful in some
situations dealing with multi-modal functions. The mutation op-
erator M : Pt → Pt+1 acts to randomly modify each vector Xt

by adding a random vector Y = (Y1, . . . . . . , YN ), where each
Yi is scaled according to the search interval of Xi :

Zt+1 = Xt + Y (16)

The entries in Y are normally distributed according to N (0; σ)
(Gaussian mutation) or U (−σ; σ) (Uniform mutation), where σ
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232 F. FRATERNALI ET AL.

FIG. 8. Final best shape of the truss in Figure 5 obtained through the BGA optimization (solid line) in comparison with the optimal shape found by Brain in [70]
(dashed line). The horizontal axis shows the generation number and the vertical axis shows the corresponding normalized best fitness J/F L (color figure provided
online).

is defined as a · (Ximax − Ximin ) and a is a scaling factor typically
chosen in the range [0.01, 0.2].

It should be noted that when a genetic operator generates
a value for a parameter out of the range, the value is reported
within the range by mirroring, i.e., by adding/subtracting the
value of the limit of the range closest to it.

4. NUMERICAL EXAMPLES
In the present section, we examine ground structures com-

posed of linearly elastic beam and/or shell elements in order

to study the shape optimization of trusses and shell-like roof
structures under different loading conditions. A specific exam-
ple is dedicated to study the optimal shape of St. Peter’s cupola
in Rome, designed over the years by a collection of notable
architects, including Donato Bramante, Michelangelo Buonar-
roti, and Antonio da Sangallo. The construction of St. Peter’s
basilica (“La Macchina di San Pietro” or St. Peter’s Machine)
began in 1506 and was only completed in 1626. The study of the
cupola is carried out resuming the results of a famous treatise by
Giovanni Poleni dated to 1748 [56], which was commissioned
by Pope Benedict XV in 1743 to help restore the statics of that
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ON THE STRUCTURAL SHAPE OPTIMIZATION 233

marvelous structure having been affected at that age by diffuse
fracture damage. It is interesting to note that the BGA minimum
compliance shape of the cupola qualitatively corresponds to that
indicated as optimal by Poleni in his treatise.

Preliminary sets of experiments were performed in order to
select the most suitable genetic operators and to find the best
values for their parameters. Based on these preliminary results,
a tournament selection mechanism with a truncation threshold
T of 0.2, EIR with d = 0.25, and Gaussian mutation with
a = 0.1, were chosen. Moreover, the mutation rate was set
to 1/N , where N is the number of controls. In other words,
one variable, on average, would be mutated for each individual.
Finally, a total number of 150, 000 evaluations were allowed for
each run. In each example, the elastic equilibrium problem of
a given finite element model was solved using the commercial
software SAP2000 c© [68], in correspondence with the current
control vector or “individual” X .

4.1. Truss Structures
The strain energy of a linearly elastic truss structure can be

written as (refer, e.g., to Washizu [69])

J (X) = U (X) = 1

2

nb∑
i=1

Ei Aiε
2
i (X)Li (X) (17)

where X is the vector of nodal coordinates, the subscript i ∈
{1, . . . , nb} indicates the bar index, E is the Young modulus of
the material, A is the cross-sectional area, ε is the axial strain,
and L is the bar length. For a given X , the strains εi in Eq. (4)
are the solutions of the elastic problem of the examined truss.

We start examining the BGA optimization of the simple truss
in Figure 1, corresponding to a single control (N = 1). In or-
der to show the capability of the BGA to escape from the local
minimum of the strain energy U , denoted a in Figures 2, 3,
we executed the following three different runs: ES1 with pop-
ulation size λ = 12, mutation rate m = 0.20, and maximum
number of generations g = 150; ES2 with λ = 30, m = 0.20,
and g = 150; and ES3 with λ = 12, m = 0.20, g = 250.
In all the runs, we uploaded the configuration a in the initial
generation (generation # 0) and let the vertical coordinate of
the adaptive node to vary within the interval [0, 4]. We plot
in Figure 4 the BGA evolutions obtained for each of the three
examined cases, showing on the horizontal axis the generation
number and on the vertical axis the corresponding best fitness.
One can observe that the BGA quickly moves away from con-
figuration a, even in the presence of a low mutation rate (runs
ES2 and ES3), and converges to the global minimizer of the
strain energy U , denoted c in Figures 2, 3. The fastest conver-
gence rate was observed in the case with the largest population
size (ES2).

The second example refers to the truss shown in Figure 5,
where the space of states indicates the prescribed deformation

FIG. 9. Physical and design constraints for the optimal shape problem of a
cable network (color figure provided online).

constraints and the space of controls indicates the design con-
straints, i.e., the limitations imposed on the controls. The nodes
of the truss were constrained in a box of dimensions 6L × 4L ,
introducing a number of controls N = 9 (cf. Figure 5, space of
controls). All the bars are made of the same material and have
equal cross-sectional area.

Figures 6–8 show the evolutions of the normalized best fit-
ness J/F L and the optimal shape of the examined truss, for
E = 2.48 × 107 F/L2, and A = 10−4 L2. The optimal shape,
shown in Figure 8, closely matches the one found by Braun
in [70] where a gradient-based approach based on material
forces was utilized.
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FIG. 10. BGA optimization of the structure in Figure 9: Best shape in correspondence with generation # 0. The horizontal axis shows the generation number
and the vertical axis shows the corresponding best fitness J (daNcm). The best shape is shown within the plot.

4.2. Funicular Curves as Minimum Compliance Shapes
In this section, we examine the possibility of determining the

funicular curve of a given set of forces as the minimum compli-
ance shape of a beam with small bending stiffness. We refer to
the spatial structure in Figure 9, which is composed of six cables

constrained to vertical columns and to the ground. The cables
carry four point loads of 1200 lb each spaced at 20 ft intervals,
with the first load located at 40 ft from the closest column and
the last one located at 90 ft from the opposite column. Due to
this particular loading condition, the cables will remain in the

FIG. 11. BGA optimization of the structure in Figure 9: Best shape in correspondence with generation # 2. The horizontal axis shows the generation number
and the vertical axis shows the corresponding best fitness J (daNcm). The best shape is shown within the plot.
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ON THE STRUCTURAL SHAPE OPTIMIZATION 235

FIG. 12. BGA optimization of the structure in Figure 9: Best shape in correspondence with generation # 3. The horizontal axis shows the generation number
and the vertical axis shows the corresponding best fitness J (daNcm). The best shape is shown within the plot.

planes containing the columns during deformation. The current
example is extracted from Zalewski and Allen [3], where the
optimal shape problem of a cable network supporting the ridge
of an exhibition tent is studied through a graphical approach,
constructing the funicular polygon through the columns, which
gives a prescribed maximum force of 6600 lb in the cables
(Figure 9, initial shape).

In the present model, the following strain energy fitness is
introduced [69]:

J (X) = U (X) = 1

2

nb∑
i=1

∫
�i (X)

[
Ei Aiε

2
i (X) + Ei Iiθ

2
i (X)

]
dx

(18)

FIG. 13. BGA optimization of the structure in Figure 9: Best shape in correspondence with generation # 100. The horizontal axis shows the generation number
and the vertical axis shows the corresponding best fitness J (daNcm). The best shape is shown within the plot.
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FIG. 14. Funicular polygon corresponding to the minimum compliance shape
of the structure in Figure 9 (color figure provided online).

where i ∈ {1, . . . , nb} is the generic beam element id, �(X) de-
notes the centerline, whose configuration depends on the control
vector X , θ is the bending strain, I is the cross-sectional mo-
ment of inertia and x is a local coordinate. The generalized
strains εi and θi in Eq. (18) are solutions of the elastic prob-
lem of the structure corresponding to a given X . For the sake
of simplicity, we assume that the beams do not deform in shear
(Bernoulli’s theory), and refer to the following mechanical prop-
erties: E = 4.17×109 lb/ft2 , A = 7.61×10−3 ft2, and I = 10−6

ft4 for the cables; and E = 4.17 × 109 lb/ft2, A = 4.01 ft2 and
I = 2.10 × 105 ft4 for the columns.

We performed an optimization of the shape given in [3] (ini-
tial shape), allowing the ground nodes of the cables to move
horizontally in the space of controls, within 20 ft from the posi-
tions corresponding to such a a shape. We also allowed the nodes
in-between the columns to move vertically up to 6.5 ft with re-
spect to the same shape. All the cables were forced to move in a
self-similiar way, introducing suitable master-slave constraints
and a total of 7 controls (cf. Figure 9, space of controls). The
evolution presented in Figures 10–13 shows that the BGA op-
timization converges in about 200 generations to a stable result
(constant best fitness). Fig. 14 highlights that the BGA min-
imum compliance shape closely matches a funicular polygon
through the columns. Indeed, due to the small bending stiffness
of the cables, the strain energy minimization penalizes bending

FIG. 15. Examined dome model.

FIG. 16. Compliance optimization of a spherical dome.

deformation and leads the cables to assume a pure axial behav-
ior. The minimum compliance funicular polygon corresponds
to a 6305 lb maximum force in the cables.

4.3. Optimal Slopes of Roofs
In a recent article [71], Villaggio studied the best shapes

of the meridians of a thin membrane of revolution loaded at

FIG. 17. Compliance optimization of a baroque dome.
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the vertex by a horizontal force P , which is identified with
the prototype of a roof structure (Figure 15). He considered
several basic shapes (pyramidal, conical, spherical, parabolic,
etc.) and optimized the size of the base diameter, keeping the
shape fixed and the product thickness by the membrane surface
area (material volume) constant. The objective function was
let to coincide with the highest meridian stress at the basis of
the membrane. Here, we deal with the search of local optima
of three different reference shapes: spherical, “baroque” and
“gothic”, following the notation of Villaggio. The latter two
coincide with two special paraboloidal shells [71]. We uploaded
in the first generation of the BGA evolution the best shape found
by Villaggio (minimum meridian stress shape) for each of the
three above cases, and let the 23 parallels of the finite element
model in Figure 15 to deform, to some extent, with respect to the
reference shape, conserving a polar-symmetric profile. We kept
the material volume constant and equal to unity (as in [71]), by
adjusting the membrane thickness. In order to perform a local
optimization, we allowed the diameter d of each parallel to vary
within the interval [(1−0.025) d∗, (1+0.025) d∗] , d∗ denoting
the diameter corresponding to the reference shape (total number
of controls: N = 23). The finite element model was assumed
to be in the pure elastic membrane regime, characterized by the

following strain energy fitness [69]

J (X) = U (X) = 1

2

ns∑
i=1

∫
�i (X)

{
Ei hi

(1 − ν2)

[ (
εi,1(X) + εi,2(X)

)2

+ 2(1 − ν)

(
1

4
γ2

i,12(X) − εi,1(X)εi,2(X)

)]}
dx1dx2 (19)

Here, i ∈ {1, . . . , nb} is the generic shell element id, �(X)
denotes the shell middle surface, whose configuration depends
on the control vector X , h is the membrane thickness, ε1, ε2 and
γ12 are in-plane extensional and shear strains, respectively, and
x1, x2 are local coordinates. It is understood that the generalized
strains εi,1, εi,2 and γi,12 in (4.3) are solutions of the elastic
problem of the examined finite element model for a given X .

The minimum compliance shapes (ν = 0.1) are compared
to the reference ones in Figures 16–18. Here, σ denotes the
maximum meridian stress at the base of the dome. One can
observe that the minimum compliance shapes do not conserve
the same reference geometry (spherical or parabolic) and exhibit
a remarkable lower compliance. In two cases (spherical and
baroque domes), the minimum compliance shapes also exhibit
smaller stress σ, while in the optimized gothic dome σ is slightly
greater than in the case of the reference shape.

FIG. 18. Compliance optimization of a gothic dome.
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238 F. FRATERNALI ET AL.

FIG. 19. (Color online, adapted from [56]) BGA evolution of the funicular
profile of St. Peter’s cupola: Generations 0 and 1 (red/light solid line: Poleni’s
funicular polygon; dark/marked solid line: current best BGA shape) (color figure
provided online).

FIG. 20. (Color online, adapted from [56]) BGA evolution of the funicular
profile of St. Peter’s cupola: Generations 4 and 8 (red/light solid line: Poleni’s
funicular polygon; dark/marked solid line: current best BGA shape) (color figure
provided online).
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ON THE STRUCTURAL SHAPE OPTIMIZATION 239

FIG. 21. (Color online, adapted from [56]) BGA evolution of the funicular
profile of St. Peter’s cupola: Generations 14 and 115 (red/light solid line: Poleni’s
funicular polygon; dark/ marked solid line: current best BGA shape) (color figure
provided online).

4.4. On the Optimal Shape of St. Peter’s Cupola in Rome
St. Peter’s cupola in Vatican, Rome, was completed in

1588 under the direction of Giacomo della Porta, who slightly
changed a previous design by Michelangelo Buonarroti, devel-
oped in the period 1548–1561 [57]. Della Porta raised Michelan-
gelo’s profile, takin the height of the structure to 136 meters. A

FIG. 22. 3D finite element model of S. Peter’s cupola (1237 shell elements
and 1297 nodes).

central point of the study of Giovanni Poleni [56] on the statics of
St. Peter’s cupola consisted of the determination of the funicular
curve of the self-weight loading. Poleni examined a meridian
slice of the cupola, corresponding to 1/50 of the full structure,
and divided each of the two symmetric halves (separated by the
central lantern) into 17 parts (cf. Figure 19). He accurately com-
puted the self weight of each of those parts (partially hollow, due
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FIG. 23. BGA evolution of a 3D finite element model of St. Peter’s cupola:
Generations 0, 10, 15 and 20.

to the presence of internal stairs) and applied a force proportional
to their weights to vertical lines containing the corresponding
centers of mass. Finally, he constructed the funicular polygon of
this system of vertical forces, which passes through the center
of the base section and mid-sections (Figure 19, red/light solid
line). The no-tension constitutive model for masonry structures

FIG. 24. BGA evolution of a 3D finite element model of St. Peter’s cupola:
Generations 25, 100, 150 and 250.

(like the cupola) assumes that the modeled material does not
react at all in tension, and demands that the funicular polygon
entirely lies within the thickness of the dome in order to ensure
structural stability (cf., e.g., Heyman [1]). One can observe that
Poleni’s funicular polygon is approximatively tangent to the in-
trados of the cupola in correspondence with the zones located at
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TABLE 1
Mean surface area (mm2) and volume (mm3) of the BGA best

shapes of St. Peter’s cupola for different generations.

Gen. Surface Volume

0 0.32373968E + 10 0.65380674E + 13
100 0.32331894E + 10 0.65318783E + 13
150 0.32344964E + 10 0.65341877E + 13
200 0.32394134E + 10 0.65430633E + 13
250 0.32527797E + 10 0.65792475E + 13
1085 0.30765911E + 10 0.59453908E + 13
1634 0.30766364E + 10 0.59437801E + 13
2367 0.30668530E + 10 0.59119369E + 13
3499 0.30467765E + 10 0.58462119E + 13

1/4 of the span from the imposts (Figure 19). This indicates the
presence of high compressive stresses at the intrados and possi-
ble fracture damage at the extrados in these areas, which were
indeed affected by diffuse cracking at the time of Poleni’s study.
Poleni and Luigi Vanvitelli, another architect consulted by Pope
Benedict XIV, suggested to restore the cupola by applying large
iron rings to be bolted to the dome. This retrofit intervention
was successfully carried out in 1748.

Proceeding as in section 4.2. we numerically computed
Poleni’s funicular arch as the minimum compliance shape of
a beam with small bending stiffness. We considered a collec-
tion of 17 beams, corresponding to the different elements of the
cupola’s slice analyzed by Poleni. The cross-sectional areas of
these elements vary between 1.27 × 106 mm2 and 5.27 × 106

mm2. An axial to bending thickness ratio equal to 50 was in-
troduced to penalize bending deformation. The nodes from 2
to 16 (Figure 19) of the beam collection were allowed to move
vertically within the intrados and the extrados of the cupola
(N = 15). Equation (18) was employed for the model fitness.
Figures 19–21 show that the BGA minimum compliance shape
converges to Poleni’s funicular polygon in about 115 genera-
tions. The fitness (strain energy) of the first best shape (genera-
tion # 0) is approximatively 350 times larger of that correspond-
ing to the final one (generation # 115).

FIG. 25. Comparison between the actual shape (left, U = 1.911 Umin) Nmm)
and the virtual minimum compliance shape (right, U = Umin , generation # 300)
of St. Peter’s cupola.

We subsequently carried out a 3D analysis of the cupola,
employing a finite element model made up of variable thickness
shell elements in the pure membrane regime (hmax = 2839
mm, hmin = 25 mm). The model was reconstructed from the
structural details of the cupola given in [56], and includes dome
elements, stiffener arches and the lantern (Figure 22).

A (virtual) compliance optimization of the 3D (real) cupola
model was carried out by letting the shell nodes to move within
the intrados and the extrados of the real cupola. Equation (19)
was employed as a fitness measure. In contrast to the 2D model,
the base nodes in the 3D case were allowed to move in the hor-
izontal plane and the vertex nodes were allowed to move in the
vertical direction, always within the thickness of the real cupola.
Polar symmetry was preserved introducing a unique control
variable for each parallel of the model with a total of N = 18
controls. The thickness of the shell elements was kept constant
and coincident with that of the real cupola, and the latter was up-
loaded as a particular individual in generation # 0. The minimum
compliance shapes corresponding to different BGA generations
(for E = 19, 600 N/mm2 and ν = 0.1) are shown in Figures 23,
24. Convergence to a stable shape was observed in about 3500
generations. Table 1 shows the corresponding evolution of the
cupola mean surface area and volume. One can observe that the
minimum compliance shape of the cupola, compared to the ac-
tual shape, is slightly slenderer, and has a strain energy U about
20 times smaller (Figure 25). In particular, the base diameter of
the optimal shape is 0.2 m smaller than that of the real one, and
its rise is about 2 m taller. Poleni [56], in his treatise, concluded
that the fracture damage observed at that time in the cupola
was mainly due to its insufficient rise and that a slightly more
slender shape would have ensured a safer structural behavior.
It is interesting to note that we are led to a quite similar result
through a purely numerical approach. It is worthwhile noting
that the original profile of the cupola designed by Michelangelo
Buonarotti was even shorter than the more “baroque” shape cre-
ated by Giacomo della Porta in 1588. It is indeed an accepted
opinion that the more “circular ” shape of Michelangelo’s would
have induced stability problems in the cupola, as it is argued,
e.g., in a recent study by Federico Bellini [57].

5. CONCLUDING REMARKS
We have presented a variational formulation of ground-

structure approaches to structural optimization within the frame-
work of optimal control problems [53]. Existence of solutions
has been proved in general form, for arbitrary ground structures,
referring to the case of geometry optimization of discrete mod-
els and minimum compliance problems. Non-uniqueness of the
solution, for the same problems, has been shown by way of
example.

A numerical procedure for shape (geometry) optimization of
discrete models has also been presented, based on a Breeder
Genetic Algorithm [48] belonging to the family of Evolutionary
Algorithms. Numerical applications have shown that the pre-
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sented procedure is well suited for shape optimization of dis-
crete structural models, being able to escape from local minima
of the fitness function. Moreover, the presented numerical im-
plementations offer classical tools of shaping structures, such as
graphical constructions of funicular curves and optimial thrust
surfaces, and can be thought of as an automatic approach to the
first phase of the conceptual design of a structure, dealing with
simple bounds on the design variables. The presented results ex-
amine the optimal shape of trusses, beams and domes. A specific
application has been dedicated to the study of the optimal shape
of St. Peter’s cupola in Rome, confirming the well documented
conclusions of the treatise by Giovanni Poleni [56]. Rather fast
convergence of the algorithm to the optimal shape was recorded
in each of the examined examples. An excellent agreement be-
tween the presented approach and other optimization methods
available in the literature has been observed.

The given optimization strategy requires little knowledge of
the search environment, can be usefully interfaced with stan-
dard software packages of structural analysis, and can be easily
generalized to nonlinear and/or dynamical optimization prob-
lems. Further generalizations may regard inclusion of general
constraints, multi-objective and multi-functional optimization
of structures, integrating architectural, structural and mechan-
ical performance criteria, and conceptual design of complex
structural shapes [46]. Also, the presented methods can be used
to obtain optimal shapes of innovative membranes and domes,
as well as optimal tensegrity and depolyable structures. Further-
more, it is particularly interesting to emphasize the conjunct use
of evolutionary strategies and the lumped stress method recently
proposed in [72–74], for the analysis of continuous shape opti-
mization problems through consistent discrete approximations.
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ometrı́a, Estructura y Construcción. Lunwerg Editores, Barcelona, 2002.

7. A.G.M. Michell. The Limits of Economy of Materials in Frame Structures,
Philos. Mag., Series 6, vol. 8, no., 47, pp. 589–597, 1904.

8. W.C. Dorn, R.E. Gomory, and H.J. Greenberg. Automatic Design of Opti-
mal Structures, J. Mecanique, vol. 3, pp. 25–52, 1964.

9. U.T. Ringertz. On Topology Optimization of Trusses, Eng. Optimiz., vol.
9, pp. 209–218, 1985.

10. M. Ohsaki. Simultaneous Optimization of Topology and Geometry of a
Regular Plane Truss, Comput. Struct., vol. 66, no., 1, 69–77, 1998.

11. G.I.N. Rozvany and M. Zou. Layout and Generalized Shape Optimization
by Iterative coc Method. In G. I. N. Rozvany, editor, Optimization of Large
Structural Systems, vol. 1, pp. 103–120. Kluwer Academic Publishers,
Dordrecht, 1993. NATO/DFG ASI.

12. P. Pedersen. Topology Optimization of Three Dimensional Trusses. In C. A.
Mota Soares M. P. Bendsøe, editor, Topology Design of Structures, vol.
227, pp. 19–30. Kluwer Academic Publishers, Dordrecht, 1990. NATO
ASI Series E: Applied Sciences.

13. M.P. Bendsøe. Optimization of Structural Topology, Shape and Material.
Springer, Berlin, Heidelberg, New York, 1995.

14. G.I.N. Rozvany and T. Birker. Generalized Michell structures – Exact
Least–weight Truss Layouts for Combined Stress and Displacements Con-
straints. Part I: General Theory for Plane Trusses, Struct. Optimization, vol.
9, pp. 78–86, 1995.

15. U. Kirsch. Integration of Reduction and Expansion Processes in Layout
Optimization, Struct. Optimization, vol. 11, pp. 13–18, 1996.

16. M. Zhou. Difficulties in Truss Topology
Optimization with Stress and Local Buckling Constraints,
Struct. Optimization, vol. 11, pp. 134–136, 1996.

17. M.P. Bendsøe and N. Kikuchi. Generating Optimal Topologies in Structural
Design using a Homogenization Method, Comput. Methods Appl. Mech.
Eng., vol. 71, pp. 197–224, 1988.
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